题目内容
已知函数f(x)=sin(x+
)-cos(x+
)+cosx,
(Ⅰ)求函数f(x)的最小正周期,并写出其所有单调递减区间;
(Ⅱ)若x∈[-
,
],求函数f(x)的最大值M与最小值m.
| π |
| 6 |
| π |
| 3 |
(Ⅰ)求函数f(x)的最小正周期,并写出其所有单调递减区间;
(Ⅱ)若x∈[-
| π |
| 2 |
| π |
| 2 |
(Ⅰ)f(x)=sin(x+
)-cos(x+
)+cosx
=
sinx+
cosx-(
cosx-
sinx)+cosx
=
sinx+cosx
=2sin(x+
),
∵ω=1,∴T=2π,
令2kπ+
≤x+
≤2kπ+
,解得:2kπ+
≤x≤2kπ+
,
则函数的单调递减区间:[2kπ+
,2kπ+
](k∈Z);
(Ⅱ)x∈[-
,
]?x+
∈[-
,
]?M=f(
)=2,m=f(-
)=-
.
| π |
| 6 |
| π |
| 3 |
=
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
=
| 3 |
=2sin(x+
| π |
| 6 |
∵ω=1,∴T=2π,
令2kπ+
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 3 |
| 4π |
| 3 |
则函数的单调递减区间:[2kπ+
| π |
| 3 |
| 4π |
| 3 |
(Ⅱ)x∈[-
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| 3 |
练习册系列答案
相关题目