题目内容
(2013•鹰潭一模)已知非零向量
,
满足|
+
|=|
-
|=
|
|,则
+
与
-
的夹角为
.
| a |
| b |
| a |
| b |
| a |
| b |
2
| ||
| 3 |
| a |
| a |
| b |
| a |
| b |
| π |
| 3 |
| π |
| 3 |
分析:由条件可得
⊥
,|
|=
|
|,故以
=
=
为临边的平行四边形OACB为矩形,设OC∩AB=M,则∠AMC为
+
与
-
的夹角θ,设OB=1,则OA=
,
MC=MA=
=1,可得△ACM为等边三角形,由此求得θ 的值.
| a |
| b |
| a |
| 3 |
| b |
| OA |
| a |
| OB |
| b |
| a |
| b |
| a |
| b |
| 3 |
MC=MA=
| OC |
| 2 |
解答:
解:∵已知非零向量
,
满足|
+
|=|
-
|=
|
|,可得
2+2
•
+
2=
2-2
•
+
2=
2,
故有
•
=0,
2=3
2,即
⊥
,|
|=
|
|,故以
=
=
为临边的平行四边形OACB为矩形,
设OC∩AB=M,则∠AMC为
+
与
-
的夹角θ,设OB=1,则OA=
,MC=MA=
=1,如图所示.
可得△ACM为等边三角形,∴θ=
,
故答案为
.
| a |
| b |
| a |
| b |
| a |
| b |
2
| ||
| 3 |
| a |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
| b |
| 4 |
| 3 |
| a |
故有
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| 3 |
| b |
| OA |
| a |
| OB |
| b |
设OC∩AB=M,则∠AMC为
| a |
| b |
| a |
| b |
| 3 |
| OC |
| 2 |
可得△ACM为等边三角形,∴θ=
| π |
| 3 |
故答案为
| π |
| 3 |
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的条件,属于中档题.
练习册系列答案
相关题目