题目内容
数列{an}的前n项和是Sn,若数列{an}的各项按如下规则排列:| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| 6 |
分析:把原数列划分成
;
,
;
,
,
;
,
,
,
;
,…然后发现他们的个数是1,2,3,4,5…构建新数列bn,很显然是个等差数列,利用等差数列的和知道前5项的和为
,前6项的和为
,所以ak定在
,
,
,…,
中,在根据Sk<10,Sk+1≥10求出具体结果.
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| 6 |
| 15 |
| 2 |
| 21 |
| 2 |
| 1 |
| 7 |
| 2 |
| 7 |
| 3 |
| 7 |
| 6 |
| 7 |
解答:解:把原数列划分成
;
,
;
,
,
;
,
,
,
;
,…
发现他们的个数是1,2,3,4,5…
构建新数列bn,则bn=
n是个等差数列,记bn的前n项和为Tn,
利用等差数列的和知道T5=
,T6=
,
所以ak定在
,
,
,…,
又因为Sk<10,Sk+1≥10,而T5+
+
+
+
+
=9+
<10,
T5+
+
+
+
+
+
=10+
>10
所以ak=
.
故答案为:
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| 6 |
发现他们的个数是1,2,3,4,5…
构建新数列bn,则bn=
| 1 |
| 2 |
利用等差数列的和知道T5=
| 15 |
| 2 |
| 21 |
| 2 |
所以ak定在
| 1 |
| 7 |
| 2 |
| 7 |
| 3 |
| 7 |
| 6 |
| 7 |
又因为Sk<10,Sk+1≥10,而T5+
| 1 |
| 7 |
| 2 |
| 7 |
| 3 |
| 7 |
| 4 |
| 7 |
| 5 |
| 7 |
| 9 |
| 14 |
T5+
| 1 |
| 7 |
| 2 |
| 7 |
| 3 |
| 7 |
| 4 |
| 7 |
| 5 |
| 7 |
| 6 |
| 7 |
| 1 |
| 2 |
所以ak=
| 5 |
| 7 |
故答案为:
| 5 |
| 7 |
点评:本题目主要考查学生对数列的观察能力,找出数列之间的相互关系,根据等差数列的前n项和计算公式,根据已有条件计算.考查学生的计算能力以及对问题的分析能力.
练习册系列答案
相关题目