题目内容
已知数列{an}为等差数列,公差为d,{bn}为等比数列,公比为q,且d=q=2,b3+1=a10=5,设cn=anbn.
(1)求数列{cn}的通项公式;
(2)设数列{cn}的前n项和为Sn,
(3)(理)求
的值.
(1)求数列{cn}的通项公式;
(2)设数列{cn}的前n项和为Sn,
(3)(理)求
| lim |
| n→∞ |
| nbn |
| Sn |
(1)∵a10=5,d=2,∴an=2n-15.
又∵b3=4,q=2,∴bn=2n-1,∴cn=(2n-15)•2n-1.
(2)∵Sn=c1+c2+c3+…+cn,∴2Sn=2c1+2c2+2c3+…+2cn,
错位相减,得-Sn=c1+(c2-2c1)+(c3-2c2)+…+(cn-2cn-1)-2cn.
∵c1=-13,cn-2cn-1=2n,
∴-Sn=-13+22+23+…+2n-(2n-15)•2n=-13+4(2n-1-1)-(2n-15)•2n
=-17+2n+1-(2n-15)•2n∴Sn=17+(2n-17)•2n.
∴
=
=
=
.
又∵b3=4,q=2,∴bn=2n-1,∴cn=(2n-15)•2n-1.
(2)∵Sn=c1+c2+c3+…+cn,∴2Sn=2c1+2c2+2c3+…+2cn,
错位相减,得-Sn=c1+(c2-2c1)+(c3-2c2)+…+(cn-2cn-1)-2cn.
∵c1=-13,cn-2cn-1=2n,
∴-Sn=-13+22+23+…+2n-(2n-15)•2n=-13+4(2n-1-1)-(2n-15)•2n
=-17+2n+1-(2n-15)•2n∴Sn=17+(2n-17)•2n.
∴
| lim |
| n→∞ |
| nbn |
| Sn |
| lim |
| n→∞ |
| n•2n-1 |
| 17+(2n-17)•2n |
=
| lim |
| n→∞ |
| n | ||
|
| 1 |
| 4 |
练习册系列答案
相关题目
定义:在数列{an}中,an>0且an≠1,若
为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2009=( )
| a | an+1 n |
| A、6026 | B、6024 |
| C、2 | D、4 |