题目内容
设函数f(x)=
若f(a)>a,则实数a的取值范围是( )
|
| A.(-∞,-1) | B.(-∞,2] | C.(2,+∞) | D.[-1,2] |
当a≥0时,f(a)=
a-1,则
a-1>a,解得a<-2,与a≥0矛盾,原不等式无解;
当a<0时,f(a)=
,则
>a,去分母得:a2-1>0即(a+1)(a-1)>0,
解得a>1(舍去)或a<-1,
所以原不等式的解集为:(-∞,-1).
故选A
| 1 |
| 2 |
| 1 |
| 2 |
当a<0时,f(a)=
| 1 |
| a |
| 1 |
| a |
解得a>1(舍去)或a<-1,
所以原不等式的解集为:(-∞,-1).
故选A
练习册系列答案
相关题目
设函数f(x)=
,若f(a)<1,则实数a的取值范围是( )
|
| A、(-∞,-3) |
| B、(1,+∞) |
| C、(-3,1) |
| D、(-∞,-3)∪(1,+∞) |
设函数f(x)=
,若f(x0)>2,则x0的取值范围是( )
|
| A、(-1,4) |
| B、(-1,+∞) |
| C、(4,+∞) |
| D、(-∞,-1)∪(4,+∞) |