题目内容
【题目】已知函数
,
.
(1)若函数
在
上不具有单调性,求实数
的取值范围;
(2)若
.
(ⅰ)求实数
的值;
(ⅱ)设
,
,
,当
时,试比较
,
,
的大小.
【答案】(1)
(2)(ⅰ)2(ⅱ)![]()
【解析】
试题分析:将二次函数
的解析式进行配方,根据其开口方向的对称轴得到该函数的单调区间, 函数
在
上不具有单调性,说明二次函数的对称轴在区间
内,由此便可求出的取值范围;
(2)(ⅰ)由
建立方程可解实数
的值;
(ⅱ)分别根据二次函数、对数函数、指数函数的性质求出当
时,
,
,
各自的取值范围,进而比较它们的大小.
试题解析:解:(1)∵抛物线
开口向上,对称轴为
,
∴函数
在
单调递减,在
单调递增, 2分
∵函数
在
上不单调
∴
,得
,
∴实数
的取值范围为
5分
(2)(ⅰ)∵
,
∴![]()
∴实数
的值为
. 8分
(ⅱ)∵
, 9分
,
,
∴当
时,
,
,
, 12分
∴
. 13分
练习册系列答案
相关题目
【题目】某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取
名学生的数学成绩,制成表所示的频率分布表.
组号 | 分组 | 频数 | 频率 |
第一组 |
|
|
|
第二组 |
|
|
|
第三组 |
|
|
|
第四组 |
|
|
|
第五组 |
|
|
|
合计 |
|
| |
(1)求
、
、
的值;
(2)若从第三、四、五组中用分层抽样方法抽取
名学生,并在这
名学生中随机抽取
名学生与张老师面谈,求第三组中至少有
名学生与张老师面谈的概率.