题目内容

设定义域为R的函数f(x)=数学公式,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是


  1. A.
    b<0且c>0
  2. B.
    b>0且c<0
  3. C.
    b<0且c=0
  4. D.
    b>0 且c=0
C
分析:关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,即要求对应于f(x)=某个常数有6个不同实数解且必有一个根为0,根据题意利用作出f(x)的简图可知,当f(x)等于何值时,它有6个根.从而得出关于x的方程f2(x)-bf(x)+c=0有7个不同实数解
解答:解:由f(x)图象知要使方程有7解,
应有f(x)=0有3解,
f(x)≠0有4解.
则c=0,b<0,
故选C.
点评:数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网