题目内容
从集合{-1,-2,-3,-4,0,1,2,3,4,5}中,选出5个数组成子集,使得这5个数中的任何两个数之和不等于1,则取出这样的子集的概率为________.
分析:先求出试验的结果共有C105,记:“这5个数中的任何两个数之和不等于1”为事件A,通过找事件A的对立事件
解答:从集合{-1,-2,-3,-4,0,1,2,3,4,5}中,随机选出5个数组成子集,共有C105种取法,即可组成C105个子集,
记“这5个数中的任何两个数之和不等于1”为事件A,
而两数之和为1的数组分别为(-1,2),(-2,3),(-3,4)(-4,5),(0,1),
②有两组数之和为1,有C52•C61=60种,
则A包含的结果共有220种,
由古典概率的计算公式可得P(A)=1-P(
故答案为:
点评:本题主要考查了古典概率的计算及利用对了事件求解概率的运用,当直接求解一个事件的概率比较困难或正面情况比较多时,往往找其反面即对立事件的个数,利用公式P(A)=1-P(
练习册系列答案
相关题目