题目内容

已知公差不为零的等差数列{an}中,a1=1,且a1,a3,a13成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2an,求数列{bn}的前n项和Sn
(1)设等差数列{an}的公差为d(d≠0),
由a1,a3,a13成等比数列,得a32=a1•a13
即(1+2d)2=1+12d
得d=2或d=0(舍去).故d=2,
所以an=2n-1
(2)∵bn=2an=22n-1
所以数列{bn}是以2为首项,4为公比的等比数列.
∴Sn=2+23+25+…+22n-1=
2(1-4n)
1-4
=
2
3
(4n-1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网