题目内容
设函数f(x)=lg(x2+ax-a-1),给出下述命题:
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥-4.
正确的命题是( )
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥-4.
正确的命题是( )
| A.①③ | B.②③ | C.②④ | D.③④ |
∵u=x2+ax-a-1的最小值为-
(a2+4a+4)≤0
∴①函数f(x)的值域为R为真命题;
但函数f(x)无最小值,故②错误;
当a=0时,易得f(-x)=f(x),即③函数f(x)为偶函数正确;
若f(x)在区间[2,+∞)上单调递增,
则-
≤2,且4+2a-a-1>0
解得a>-3,故④错误;
故选A
| 1 |
| 4 |
∴①函数f(x)的值域为R为真命题;
但函数f(x)无最小值,故②错误;
当a=0时,易得f(-x)=f(x),即③函数f(x)为偶函数正确;
若f(x)在区间[2,+∞)上单调递增,
则-
| a |
| 2 |
解得a>-3,故④错误;
故选A
练习册系列答案
相关题目
设函数f(x)=
,若f(x0)>0则x0取值范围是( )
|
| A、(-∞,-1)∪(1,+∞) |
| B、(-∞,-1)∪(0,+∞) |
| C、(-1,0)∪(0,1) |
| D、(-1,0)∪(0,+∞) |