题目内容
已知函数f(x)=sin(2x+
)+sin(2x-
)-2cos2x,x∈[-
,
]
(1)化简函数f(x)的解析式;
(2)求函数f(x)的最大值及相应的自变量x的取值.
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
(1)化简函数f(x)的解析式;
(2)求函数f(x)的最大值及相应的自变量x的取值.
(1)f(x)=
sin2x+
cos2x+
sin2x-
cos2x-cos2x-1
=
sin2x-cos2x-1=2sin(2x-
)-1;
(2)∵x∈[-
,
],∴2x-
∈[-
,
],
∴sin(2x-
)∈[-1,1],
则当2x-
=
,即x=
时,函数f(x)有最大值1.
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=
| 3 |
| π |
| 6 |
(2)∵x∈[-
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| 5π |
| 6 |
∴sin(2x-
| π |
| 6 |
则当2x-
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
练习册系列答案
相关题目