题目内容
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=| x2+a |
| bx-c |
(1)试求b、c满足的关系式.
(2)若c=2时,各项不为零的数列{an}满足4Sn•f(
| 1 |
| an |
| 1 |
| an |
| 1 |
| e |
| 1 |
| an |
(3)设bn=-
| 1 |
| an |
分析:(1)设
=x的不动点为0和2,由此知
即
即b=1+
且c≠0.
(2)由c=2,知b=2,f(x)=
(x≠1),2Sn=an-an2,且an≠1.所以an-an-1=-1,an=-n,要证待证不等式,只要证(1+
)-(n+1)<
<(1+
)-n,即证(1+
)n<e<(1+
)n+1,只要证nln(1+
)<1<(n+1)ln(1+
),即证
<ln(1+
)<
.考虑证不等式
<ln(x+1)<x(x>0),由此入手能导出(1-
)an+1<
<(1-
)an.
(3)由bn=
,知Tn=1+
+
+…+
.在
<ln(1+
)<
中,令n=1,2,3,…,2008,并将各式相加,能得到T2009-1<ln2009<T2008.
| x2+a |
| bx-c |
|
|
| c |
| 2 |
(2)由c=2,知b=2,f(x)=
| x2 |
| 2(x-1) |
| 1 |
| n |
| 1 |
| e |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n |
| x |
| x+1 |
| 1 |
| an |
| 1 |
| e |
| 1 |
| an |
(3)由bn=
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n |
解答:解:(1)设
=x的不动点为0和2
∴
即
即b=1+
且c≠0
(2)∵c=2∴b=2∴f(x)=
(x≠1),
由已知可得2Sn=an-an2①,且an≠1.
当n≥2时,2Sn-1=an-1-an-12②,
①-②得(an+an-1)(an-an-1+1)=0,∴an=-an-1或an=-an-1=-1,
当n=1时,2a1=a1-a12?a1=-1,
若an=-an-1,则a2=1与an≠1矛盾.∴an-an-1=-1,∴an=-n
∴要证待证不等式,只要证(1+
)-(n+1)<
<(1+
)-n,
即证(1+
)n<e<(1+
)n+1,
只要证nln(1+
)<1<(n+1)ln(1+
),即证
<ln(1+
)<
.
考虑证不等式
<ln(x+1)<x(x>0)**.
令g(x)=x-ln(1+x),h(x)=ln(x+1)-
(x>0).
∴g'(x)=
,h'(x)=
,
∵x>0,∴g'(x)>0,h'(x)>0,∴g(x)、h(x)在(0,+∞)上都是增函数,
∴g(x)>g(0)=0,h(x)>h(0)=0,∴x>0时,
<ln(x+1)<x.
令x=
则**式成立,∴(1-
)an+1<
<(1-
)an,
(3)由(Ⅱ)知bn=
,则Tn=1+
+
+…+
在
<ln(1+
)<
中,令n=1,2,3,,2008,并将各式相加,
得
+
+…+
<ln
+ln
+…+ln
<1+
+
+…+
.
即T2009-1<ln2009<T2008.
| x2+a |
| bx-c |
∴
|
|
| c |
| 2 |
(2)∵c=2∴b=2∴f(x)=
| x2 |
| 2(x-1) |
由已知可得2Sn=an-an2①,且an≠1.
当n≥2时,2Sn-1=an-1-an-12②,
①-②得(an+an-1)(an-an-1+1)=0,∴an=-an-1或an=-an-1=-1,
当n=1时,2a1=a1-a12?a1=-1,
若an=-an-1,则a2=1与an≠1矛盾.∴an-an-1=-1,∴an=-n
∴要证待证不等式,只要证(1+
| 1 |
| n |
| 1 |
| e |
| 1 |
| n |
即证(1+
| 1 |
| n |
| 1 |
| n |
只要证nln(1+
| 1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n |
考虑证不等式
| x |
| x+1 |
令g(x)=x-ln(1+x),h(x)=ln(x+1)-
| x |
| x+1 |
∴g'(x)=
| x |
| 1+x |
| x |
| (x+1)2 |
∵x>0,∴g'(x)>0,h'(x)>0,∴g(x)、h(x)在(0,+∞)上都是增函数,
∴g(x)>g(0)=0,h(x)>h(0)=0,∴x>0时,
| x |
| x+1 |
令x=
| 1 |
| n |
| 1 |
| an |
| 1 |
| e |
| 1 |
| an |
(3)由(Ⅱ)知bn=
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
在
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n |
得
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2009 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2009 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
即T2009-1<ln2009<T2008.
点评:本题考查不等式的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关题目