题目内容

10.已知矩阵A=$(\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array})$.
(1)求A的逆矩阵A-1
(2)求矩阵A的特征值λ1、λ2和对应的一个特征向量$\overrightarrow{{α}_{1}}$、$\overrightarrow{α_2}$.

分析 (1)通过变换可得$[\begin{array}{l}{1}&{2}&{1}&{0}\\{-1}&{4}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{\frac{2}{3}}&{-\frac{1}{3}}\\{0}&{1}&{\frac{1}{6}}&{\frac{1}{6}}\end{array}]$,即得结论;
(2)令其特征多项式f(λ)为0,即可求得特征值,再分别在f(λ)=0代入特征值即可求得分别对应的特征向量.

解答 解:(1)∵$[\begin{array}{l}{1}&{2}&{1}&{0}\\{-1}&{4}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{2}&{1}&{0}\\{0}&{6}&{1}&{1}\end{array}]$→$[\begin{array}{l}{1}&{2}&{1}&{0}\\{0}&{1}&{\frac{1}{6}}&{\frac{1}{6}}\end{array}]$→$[\begin{array}{l}{1}&{0}&{\frac{2}{3}}&{-\frac{1}{3}}\\{0}&{1}&{\frac{1}{6}}&{\frac{1}{6}}\end{array}]$,
∴A-1=$[\begin{array}{l}{\frac{2}{3}}&{-\frac{1}{3}}\\{\frac{1}{6}}&{\frac{1}{6}}\end{array}]$;
(2)∵A=$(\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array})$,
∴f(λ)=$|\begin{array}{l}{λ-1}&{-2}\\{1}&{λ-4}\end{array}|$=λ2-5λ+6=(λ-2)(λ-3)=0,
解得λ1=2,λ2=3,
设$\overrightarrow{{α}_{1}}$=$[\begin{array}{l}{{x}_{1}}\\{{y}_{1}}\end{array}]$,$\overrightarrow{{α}_{2}}$=$[\begin{array}{l}{{x}_{2}}\\{{y}_{2}}\end{array}]$,
∵$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$$[\begin{array}{l}{{x}_{1}}\\{{y}_{1}}\end{array}]$=2$[\begin{array}{l}{{x}_{1}}\\{{y}_{1}}\end{array}]$,∴$\left\{\begin{array}{l}{{x}_{1}=2}\\{{y}_{1}=1}\end{array}\right.$,即$\overrightarrow{{α}_{1}}$=$[\begin{array}{l}{2}\\{1}\end{array}]$,
∵∵$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$$[\begin{array}{l}{{x}_{2}}\\{{y}_{2}}\end{array}]$=3$[\begin{array}{l}{{x}_{2}}\\{{y}_{2}}\end{array}]$,∴$\left\{\begin{array}{l}{{x}_{2}=1}\\{{y}_{2}=1}\end{array}\right.$,即$\overrightarrow{{α}_{2}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$.

点评 本题考查矩阵特征值的求法及求其对应的特征向量,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网