题目内容
已知数列{an}是首项为a1=
,公比q=
的等比数列.设bn+2=3log
an(n∈N*),数列{cn}满足cn=an•bn
(I)求证:数列{bn}是等差数列;
(II)求数列{cn}的前n项和Sn.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(I)求证:数列{bn}是等差数列;
(II)求数列{cn}的前n项和Sn.
分析:(I)利用等比数列的通项公式可求得an,利用对数性质可求得log
an=n,从而可求得bn=3n-2,利用bn+1-bn为定值即可;
(II)由于cn=(3n-2)•(
)n,Sn=c1+c2+…+cn,利用错位相减法即可求得Sn.
| 1 |
| 2 |
(II)由于cn=(3n-2)•(
| 1 |
| 2 |
解答:解:(I)证明:∵a1=
,公比q=
,
∴an=
•(
)n-1=(
)n,
∴log
an=n,
又bn+2=3log
an=3n,
∴bn=3n-2,b1=1,
∴bn+1=3(n+1)-2,
∴bn+1-bn=3,
∴{bn}是1为首项,3为公差的等差数列;
(II)由(Ⅰ)知bn=3n-2,an=(
)n,
∴cn=an•bn=(3n-2)•(
)n,
∴Sn=1×(
)1+4×(
)2+7×(
)3+…+(3n-2)×(
)n ①
Sn=1×(
)2+4×(
)3+7×(
)4+…+(3n-5)×(
)n+(3n-2)×(
)n+1②
故①-②得:
Sn=1×
+3×(
)2+3×(
)3+3×(
)4+…+3×(
)n-(3n-2)×(
)n+1
∴
Sn=
+3×
-(3n-2)×(
)n+1=2-
,
∴Sn=4-
.
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴log
| 1 |
| 2 |
又bn+2=3log
| 1 |
| 2 |
∴bn=3n-2,b1=1,
∴bn+1=3(n+1)-2,
∴bn+1-bn=3,
∴{bn}是1为首项,3为公差的等差数列;
(II)由(Ⅰ)知bn=3n-2,an=(
| 1 |
| 2 |
∴cn=an•bn=(3n-2)•(
| 1 |
| 2 |
∴Sn=1×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
(
| ||||
1-
|
| 1 |
| 2 |
| 4+3n |
| 2n+1 |
∴Sn=4-
| 4+3n |
| 2n |
点评:本题考查等差数关系的确定,考查等差数列与等比数列的通项公式,考查数列求和,着重考查错位相减法,考查推理与运算能力,属于难题.
练习册系列答案
相关题目