题目内容

有多少个能被3整除而又含有数字6的五位数?

解析:易知,在90 000个五位数中共有30 000个可被3整除.下面求其中不含数字6的有多少个:在最高位,不能为0和6,有8种可能,在千、百、十位上,不能为6各有9种可能,在个位上,不仅不能为6,还应使整个五位数能被3整除,因此所出现的数应与前四位数字之和被3除的余数有关.当该余数为2时,个位上可为1,4,7中的一个;当该余数为1时,个位上可为2,5,8中的一个;当该余数为0时,个位上可为0,3,9.总之,不论前四位数如何,个位数字都有3种可能情况.所以这类五位数的个数为8×9×9×9×3=17 496.故不含数字6而又可被3整除的五位数共有30 000-17 496=12 504(个).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网