题目内容

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
分析:(1)利用f(-1)=0和函数f(x)的值域为[0,+∞),建立方程关系,即可求出a,b,从而确定F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,利用g(x)=f(x)-kx的单调区间与对称轴之间的关系建立不等式进行求解即可.
解答:解:(1)∵f(-1)=0,
∴a-b+1=0,①
∵函数f(x)的值域为[0,+∞),
∴a>0且判别式△=0,即b2-4a=0,②
由①②得a=1,b=2.
∴f(x)=ax2+bx+1═x2+2x+1.
∴F(x)=
x2+2x+1,  x>0
-x2-2x-1, x<0

(2)g(x)=f(x)-kx=x2+(2-k)x+1,
函数的对称轴为x=-
2-k
2
=
k-2
2

要使函数g(x)=f(x)-kx,在x∈[-2,2]上是单调函数,
则区间[-2,2]必在对称轴的一侧,
k-2
2
≥2
k-2
2
≤-2

解得k≥6或k≤-2.
即实数k的取值范围是k≥6或k≤-2.
点评:本题主要考查二次函数的图象和性质,以及二次函数单调性与对称轴之间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网