题目内容
在直角△ABC中,已知C为直角,∠ABC=30°,
=3
,且|
|=2,则
•
=
| AB |
| AM |
| AB |
| CB |
| CM |
1
1
.分析:可得|
|,
=
+
,代入由数量积的运算可得.
| CB |
| CM |
| 2 |
| 3 |
| CA |
| 1 |
| 3 |
| CB |
解答:解:由题意可得|
|=|
|cos30°=2×
=
,
又
=
+
=
+
,
故
•
=
•
+
2=0+
2=1.
故答案为:1
| CB |
| AB |
| ||
| 2 |
| 3 |
又
| CM |
| CA |
| 1 |
| 3 |
| AB |
| 2 |
| 3 |
| CA |
| 1 |
| 3 |
| CB |
故
| CB |
| CM |
| 2 |
| 3 |
| CB |
| CA |
| 1 |
| 3 |
| CB |
| 1 |
| 3 |
| CB |
故答案为:1
点评:本题考查平面向量数量积的运算,涉及三角形的边角关系,属基础题.
练习册系列答案
相关题目