题目内容

已知数列{an}满足a1=2,an+1=2(1+
1
n
2•an
(1)求证数列{
an
n2
}是等比数列,并求其通项公式;
(2)设b n=
an
n
,求数列{bn}的前n项和Sn
(3)设Cn=
n
an
,求证:c1+c2+c3+…+cn
7
10
(1)∵an+1=2(1+
1
n
2•an
an+1
(n+1)2
=2•
an
n2

∵a1=2,∴{
an
n2
}是以2为首项,2为公比的等比数列
an
n2
=2n

∴an=n2•2n;  
(2) bn=
an
n
=n•2n
∴Sn=1•21+2•22+…+n•2n
∴2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1
两式相减可得-Sn=2n+1-2-n•2n+1
∴Sn=2+(n-1)•2n+1
(3)证明:cn=
n
an
=
1
n•2n
>0,
设Tn=c1+c2+c3+…+cn,则T1<T2<T3<T4
当n≥4时,Tn=
1
1•2
+
1
2•22
+…+
1
n•2n
1
2
+
1
8
+
1
4
(
1
24
+…+
1
2n
)
=
2
3
+
1
4
1
23
-
1
4
•(
1
2
)n
2
3
+
1
4
1
23
2
3
+
1
30
=
7
10

综上:c1+c2+c3+…+cn
7
10
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网