题目内容
已知正项数列{an} 中,a1=2,log2an+1•(log2an+3)=3log2an(n∈N*),
(1)求数列{ an}的通项公式;
(2)记bn=
(n∈N*),求数列{ bn}的前n项积Tn的值.
(1)求数列{ an}的通项公式;
(2)记bn=
| n | an |
分析:(1)令cn=log2an,由于log2an+1•(log2an+3)=3log2an(n∈N*),可得cn+1(cn+3)=3cn,变形为
-
=
.利用等差数列的通项公式可得cn,进而得到an
(2)利用(1)可得bn=2
(
-
),利用指数幂的运算性质和对指数“裂项求和”即可得出.
| 1 |
| cn+1 |
| 1 |
| cn |
| 1 |
| 3 |
(2)利用(1)可得bn=2
| 3 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:(1)令cn=log2an,
∵log2an+1•(log2an+3)=3log2an(n∈N*),∴cn+1(cn+3)=3cn,
化为
-
=
.又
=
=
=1.
∴数列{
}是等差数列,首项为1,公差为
.
∴
=1+
(n-1)=
,
∴cn=
.
∴log2an=
,
∴an=2
.
(2)∵bn=
=2
=2
(
-
),
∴Tn=b1b2•…•bn=2
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]=2
(1+
-
-
)=21-
(
+
).
∵log2an+1•(log2an+3)=3log2an(n∈N*),∴cn+1(cn+3)=3cn,
化为
| 1 |
| cn+1 |
| 1 |
| cn |
| 1 |
| 3 |
| 1 |
| c1 |
| 1 |
| log2a1 |
| 1 |
| log22 |
∴数列{
| 1 |
| cn |
| 1 |
| 3 |
∴
| 1 |
| cn |
| 1 |
| 3 |
| n+2 |
| 3 |
∴cn=
| 3 |
| n+2 |
∴log2an=
| 3 |
| n+2 |
∴an=2
| 3 |
| n+2 |
(2)∵bn=
| n | an |
| 3 |
| n(n+2) |
| 3 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=b1b2•…•bn=2
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
点评:本题考查了通过变形转化为等差数列、等差数列的通项公式、“裂项求和”等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目