题目内容

13、在正项等比数列{an}中,a3a7=4,则数列{log2an}的前9项之和为
9
分析:先根据等比数列的性质得到a3a7=a1a9=a2a8=a4a6=a52=4,可求出a5的值,然后根据对数的运算性质可知log2a1+log2a2+log2a3+log2a4+log2a5+log2a6+log2a7+log2a8+log2a9=log2(a1a2…a9),然后将数值代入即可得到答案.
解答:解:∵{an}是正项等比数列,∴a3a7=a1a9=a2a8=a4a6=a52=4
∴a5=2
S9=log2a1+log2a2+log2a3+log2a4+log2a5+log2a6+log2a7+log2a8+log2a9=log2(a1a2…a9
=log2[(a3a7)(a1a9)(a2a8)(a4a6)(a5)]=log2(44×2)=log229=9
故答案为9
点评:本题主要考查了等比数列的性质.若 m、n、p、q∈N*,且m+n=p+q,则aman=apaq
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网