题目内容

已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,则(  )
A、f(2)>e2f(0),f(2010)>e2010f(0)B、f(2)<e2f(0),f(2010)>e2010f(0)C、f(2)>e2f(0),f(2010)<e2010f(0)D、f(2)<e2f(0),f(2010)<e2010f(0)
分析:先转化为函数y=
f(x)
ex
的导数形式,再判断增减性,从而得到答案.
解答:解:∵f(x)<f'(x) 从而 f'(x)-f(x)>0 从而
ex[f′(x)-f(x)]
e2x
>0
从而(
f(x)
ex
)
>0 从而函数y=
f(x)
ex
单调递增,故 x=2时函数的值大于x=0时函数的值,
f(2)
e2
>f(0)
所以f(2)>e2f(0).
同理f(2010)>e2010f(0);
故选A.
点评:本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网