ÌâÄ¿ÄÚÈÝ
20£®ÎªÁËÁ˽âÁ½ÖÖÊÖ»úµç³ØµÄ´ý»úʱ¼ä£¬Ñо¿ÈËÔ±·Ö±ð¶Ô¼×¡¢ÒÒÁ½ÖÖµç³Ø×öÁË7´Î²âÊÔ£¬²âÊÔ½á¹ûͳ¼ÆÈçϱíËùʾ£º| ²âÊÔ´ÎÊý | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ¼×µç³Ø´ý»úʱ¼ä£¨h£© | 120 | 125 | 122 | 124 | 124 | 123 | 123 |
| ÒÒµç³Ø´ý»úʱ¼ä£¨h£© | 118 | 123 | 127 | 120 | 124 | 120 | 122 |
£¨¢ò£©ÎªÁËÉîÈëÑо¿ÒÒµç³ØµÄÐÔÄÜ£¬Ñо¿ÈËÔ±´ÓÒÒµç³Ø´ý»úʱ¼ä²âÊÔµÄ7×éÊý¾ÝÖÐËæ»ú³éÈ¡2×é·ÖÎö£¬Çó2×éÊý¾Ý¾ù´óÓÚ121µÄ¸ÅÂÊ£®
·ÖÎö £¨I£©$\overline{x}$¼×£¬$\overline{x}$ÒÒ£¬x¼×2£¬x${\;}_{ÒÒ}^{2}$£¬ÔËÓù«Ê½Çó½â£¬¸ù¾Ýƽ¾ùÊý£¬·½²îµÄÒâÒåÅжϼ´¿É£®
£¨II£©Óɱí¸ñ¿ÉÖª£¬´óÓÚ121µÄÊý¾ÝÓÐ4×飬¼ÇΪA£¬B£¬C£¬D£¬²»´óÓÚ121µÄÊý¾ÝÓÐ3×飬a£¬b£¬c£®ÔËÓÃÁоٷ¨Åжϣ¬Çó½â¸ÅÂÊ£®
½â´ð ½â£»£¨I£©$\overline{x}$¼×=120+$\frac{0+5+2+4+4+3+3}{7}$=123£¨h£©
$\overline{x}$ÒÒ=120+$\frac{-2+3+7+0+4+0+2}{7}$=122£¨h£©£¬
x¼×2=$\frac{1}{7}$[£¨120-123£©2+£¨125-123£©2+£¨122-123£©2+£¨124-123£©2+£¨124-123£©2+£¨123-123£©2+£¨123-123£©2]=$\frac{16}{7}$
x${\;}_{ÒÒ}^{2}$=$\frac{1}{7}$[£¨118-122£©2+£¨123-122£©2+£¨127-122£©2+£¨120-122£©2+£¨124-122£©2+£¨120-122£©2+£¨122-122£©2]=$\frac{54}{7}$¡ß
¡ßx¼×£¾$\overline{x}$ÒÒ£¬x¼×2£¼x${\;}_{ÒÒ}^{2}$£¬
¹Ê¼×µç³ØµÄ´ý»úʱ¼ä¼°Îȶ¨ÐÔ¾ùÓÅÓÚÒÒ£¬¹Ê¼×µç³ØµÄÐÔÄܽϺã®
£¨II£©Óɱí¸ñ¿ÉÖª£¬´óÓÚ121µÄÊý¾ÝÓÐ4×飬¼ÇΪA£¬B£¬C£¬D£¬²»´óÓÚ121µÄÊý¾ÝÓÐ3×飬a£¬b£¬c£®
ÔòÔÚ7×éÊý¾ÝÖÖ£¨A£¬B£©£¬£¨A£¬C£©£¬£¨A£¬D£©£¬£¨A£¬a£©£¬£¨A£¬b£©£¬£¨A£¬c£©£¬£¨B£¬C£©£¬£¨B£¬D£©£¬£¨B£¬a£©£¬£¨B£¬b£©£¬£¨B£¬c£©£¬£¨C£¬D£©£¬£¨C£¬a£©£¬£¨C£¬b£©£¬£¨C£¬c£©
£¨D£¬a£©£¬£¨D£¬b£©£¬£¨D£¬c£©£¨a£¬b£©£¬£¨a£¬c£©£¬£¨b£¬c£©¹²21ÖÖ£¬Âú×ãÌõ¼þ2×éÊý¾Ý¾ù´óÓÚ121µÄ6ÖÖ£¬
¹Ê2×éÊý¾Ý¾ù´óÓÚ121µÄ¸ÅÂÊΪ$\frac{6}{21}$=$\frac{2}{7}$
µãÆÀ ±¾ÌâÖ÷Òª¿¼²ìÓÃÑù±¾¹À¼Æ×ÜÌåµÄÊý×ÖÌØÕ÷£¬Áоٷ¨Çó½â¹Åµä¸ÅÂÊ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£®
£¨1£©ÓÐÒ»¸öÃæÊDZ߳¤Îª1µÄµÈ±ßÈý½ÇÐΣ»
£¨2£©ÓÐÁ½¸öÃæÊǵÈÑüÖ±½ÇÈý½ÇÐΣ®
ÄÇôËÄÃæÌåA-BCDµÄÌå»ýµÄȡֵ¼¯ºÏÊÇ£¨¡¡¡¡£©
| A£® | $\{\frac{1}{2}£¬\frac{{\sqrt{2}}}{12}\}$ | B£® | $\{\frac{1}{6}£¬\frac{{\sqrt{3}}}{12}\}$ | C£® | $\{\frac{{\sqrt{2}}}{12}£¬\frac{{\sqrt{3}}}{12}£¬\frac{{\sqrt{2}}}{24}\}$ | D£® | $\{\frac{1}{6}£¬\frac{{\sqrt{2}}}{12}£¬\frac{{\sqrt{2}}}{24}\}$ |