题目内容
桌面上有3枚正面(有面额的那面)朝上的硬币,每次用双手同时翻转2枚硬币,那么无论怎样翻转,都不能使硬币全部反面朝上,你能解释这种现象吗?
思路:本题若从正面入手考虑,很难找到解决问题的切入点.此时我们不妨利用间接法(反证法)来说明这个问题.
探究:假设经过若干次翻转可以使硬币全部反面向上,由于每枚硬币从正面朝上变为反面朝上,都需要翻转奇数次,所以3枚硬币全部反面朝上时,需要翻转(3×奇数)次,即要翻转奇数次,但由于每次用双手同时翻转2枚硬币,3枚硬币被翻转的次数只能是2的倍数,即偶数次,这个矛盾说明假设错误,所以原结论成立.
练习册系列答案
相关题目