题目内容
设函数f(x)=cos(2x+
)+sin2x.
(1)求函数f(x)的最小正周期.
(2)若x∈[
,
],求函数f(x)的值域.
(3)设A,B,C为△ABC的三个内角,若cosB=
,f(
)=-
,且C为锐角,求sinA.
| π |
| 3 |
(1)求函数f(x)的最小正周期.
(2)若x∈[
| π |
| 12 |
| 7π |
| 12 |
(3)设A,B,C为△ABC的三个内角,若cosB=
| 1 |
| 3 |
| c |
| 2 |
| 1 |
| 4 |
(1)f(x)=cos(2x+
π)+sin2x
=cos2xcos
π-sin2xsin
π+
=
cos2x-
sin2x+
-
cos2x
=
∵sin2x∈[-1,1]
∴
≤f(x)≤
所以函数f(x)的最大值为
,最小正周期为π
(2)∵x∈[
,
]
∴2x∈[
,
]
∴-
≤sin2x≤1
∴f(x)∈[
,
]
(3)f(
c)=
-
=-
所以sinC=
,因为C为锐角,
所以C=
π,又因为在△ABC中,cosB=
,所以sinB=
所以SinA=sin(C+B)=sinBcosC+sinCcosB
=
×
+
×
=
| 1 |
| 3 |
=cos2xcos
| 1 |
| 3 |
| 1 |
| 3 |
| 1-cos2x |
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
1-
| ||
| 2 |
∵sin2x∈[-1,1]
∴
1-
| ||
| 2 |
1+
| ||
| 2 |
所以函数f(x)的最大值为
1+
| ||
| 2 |
(2)∵x∈[
| π |
| 12 |
| 7π |
| 12 |
∴2x∈[
| π |
| 6 |
| 7π |
| 6 |
∴-
| 1 |
| 2 |
∴f(x)∈[
1-
| ||
| 2 |
2+
| ||
| 4 |
(3)f(
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 4 |
所以sinC=
| ||
| 2 |
所以C=
| 1 |
| 3 |
| 1 |
| 3 |
2
| ||
| 3 |
所以SinA=sin(C+B)=sinBcosC+sinCcosB
=
2
| ||
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| ||
| 2 |
=
2
| ||||
| 6 |
练习册系列答案
相关题目