题目内容
11.若x、y满足$\left\{\begin{array}{l}x+3y-5≥0\\ x+y≤7\\ x-2≥0\end{array}$,则z=x+2y的最大值为15.分析 作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.
解答
解:作出不等式组对应的平面区域如图:
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z经过点A时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{x=2}\\{x+y=7}\end{array}\right.$,即$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$,
即A(2,5),此时z=2+2×5=15,
故答案为:15
点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
20.单位圆中,200°的圆心角所对的弧长为( )
| A. | 10π | B. | 9π | C. | $\frac{9}{10}$π | D. | $\frac{10}{9}$π |