题目内容

5.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.当水位上涨,水面宽为2米时,拱顶到水面的距离为0.5米.

分析 先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把x=1代入抛物线方程求得y0进而得到答案.

解答 解:如图建立直角坐标系,
设抛物线方程为x2=my,
将A(2,-2)代入x2=my,
得m=-2,
∴x2=-2y,
代入B(1,y0)得y0=-$\frac{1}{2}$,
故拱顶到水面的距离为0.5m.
故答案为:0.5.

点评 本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网