题目内容

已知y=f(x)是奇函数,当0≤x≤4时,f(x)=x2-2x,则当-4≤x≤0时,f(x)的解析式是


  1. A.
    x2-2x
  2. B.
    -x2-2x
  3. C.
    -x2+2x
  4. D.
    x2+2x
B
分析:由题意设x>0利用已知的解析式求出f(-x)=x2+2x,再由f(x)=-f(-x),求出x>0时的解析式.
解答:由题意可得:设-4≤x≤0,则0≤-x≤4;
∵当0≤x≤4时,f(x)=x2-2x,
∴f(-x)=x2+2x,
因为函数f(x)是奇函数,
所以f(-x)=-f(x),
所以-4≤x≤0时f(x)=-f(-x)=-x2-2x,
故选:B.
点评:本题的考点是利用函数的奇偶性求函数的解析式(即利用f(x)和f(-x)的关系),把x的范围转化到已知的范围内求对应的解析式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网