题目内容
已知函数f(x)=2sinxcosx+sin(2x+
).
(1)若x∈R,求f(x)的最小正周期和单调递增区间;
(2)设x∈[0,
],求f(x)的值域.
| π |
| 2 |
(1)若x∈R,求f(x)的最小正周期和单调递增区间;
(2)设x∈[0,
| π |
| 3 |
(1)f(x)=sin2x+cos2x=
sin(2x+
)
周期T=
=π;
令2kπ-
≤2x+
≤
+2kπ,得kπ-
≤x≤kπ+
所以,单调递增区间为[kπ-
,kπ+
],k∈Z
(2)若0≤x≤
,则
≤2x+
≤
,sin
=sin
=sin(
-
)=
<sin
∴
≤sin(2x+
)≤1,
≤
sin(2x+
)≤
即f(x)的值域为[
,
]
| 2 |
| π |
| 4 |
周期T=
| 2π |
| 2 |
令2kπ-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
所以,单调递增区间为[kπ-
| 3π |
| 8 |
| π |
| 8 |
(2)若0≤x≤
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
| 11π |
| 12 |
| 11π |
| 12 |
| π |
| 12 |
| π |
| 4 |
| π |
| 6 |
| ||||
| 4 |
| π |
| 4 |
| ||||
| 4 |
| π |
| 4 |
| ||
| 2 |
| 2 |
| π |
| 4 |
| 2 |
即f(x)的值域为[
| ||
| 2 |
| 2 |
练习册系列答案
相关题目