搜索
题目内容
已知f(x)=x
2
-2x,则满足条件
f(x)+f(y)≤0
f(x)-f(y)≥0
的点(x,y)所形成区域的面积为______.
试题答案
相关练习册答案
∵f(x)=x
2
-2x
∴约束条件
f(x)+f(y)≤0
f(x)-f(y)≥0
可以转化为
(x-1
)
2
+(y-1
)
2
≤2
(x-1
)
2
-(y-1
)
2
≥0
其对应的可行域如下图示:
其面积为:
1
2
•π•
2
2
=π
故答案为:π
练习册系列答案
寒假生活教育科学出版社系列答案
中考模拟总复习江苏科技出版社系列答案
寒假衔接班寒假提优20天江苏人民出版社系列答案
宏翔文化3年中考2年模拟1年预测系列答案
初中毕业生升学模拟考试系列答案
过好寒假每一天系列答案
寒假作业中国地图出版社系列答案
中考复习攻略南京师范大学出版社系列答案
智多星归类复习测试卷系列答案
智多星模拟加真题测试卷系列答案
相关题目
已知f(x)=x
2
+ax+b(a,b∈R的定义域为[-1,1].
(1)记
|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的
M=
1
2
时,f(x)
的表达式.
已知f(x)=x
2
+x+1,则
f(
2
)
=
;f[
f(
2
)
]=
.
已知f(x)=x
2
+2x,数列{a
n
}满足a
1
=3,a
n+1
=f′(a
n
)-n-1,数列{b
n
}满足b
1
=2,b
n+1
=f(b
n
).
(1)求证:数列{a
n
-n}为等比数列;
(2)令
c
n
=
1
a
n
-n-1
,求证:
c
2
+
c
3
+…+
c
n
<
2
3
;
(3)求证:
1
3
≤
1
1+
b
1
+
1
1+
b
2
+…+
1
1+
b
n
<
1
2
已知f(x)=x
2
-x+k,若log
2
f(2)=2,
(1)确定k的值;
(2)求
f(x)+
9
f(x)
的最小值及对应的x值.
已知f(x)=x
2
+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)
2
]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较
f(1)和
1
6
的大小.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案