题目内容
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的图象有一个最高点(
,1).
(1)求f(x)的解析式;
(2)若α为钝角,且f(α)=
,求f(-α)的值.
| π |
| 3 |
(1)求f(x)的解析式;
(2)若α为钝角,且f(α)=
| 1 |
| 3 |
分析:(1)由利用图象上一个最高点(
,1),先求A,再由0<φ<π,求出φ,可得解析式;
(2)由题意得sin(α+
)=
,即可得到cos(α+
)=-
,再由两角差公式得到f(-α)=sin
cos(α+
)-cos
sin(α+
),进而得到f(-α)的值.
| π |
| 3 |
(2)由题意得sin(α+
| π |
| 6 |
| 1 |
| 3 |
| π |
| 6 |
2
| ||
| 3 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
解答:解:(1)由于函数f(x)=Asin(x+φ)(A>0,0<φ<π)的图象有一个最高点(
,1).
得A=1,有sin(
+φ)=1,
又0<φ<π,∴φ=
,
故f(x)的解析式为:f(x)=sin(x+
);
(2)由于α为钝角,且f(α)=
,
则sin(α+
)=
,故cos(α+
)=-
,
所以f(-α)=sin(-α+
)=sin[
-(α+
)]
=sin
cos(α+
)-cos
sin(α+
)
=-
×
-
×
=-
.
| π |
| 3 |
得A=1,有sin(
| π |
| 3 |
又0<φ<π,∴φ=
| π |
| 6 |
故f(x)的解析式为:f(x)=sin(x+
| π |
| 6 |
(2)由于α为钝角,且f(α)=
| 1 |
| 3 |
则sin(α+
| π |
| 6 |
| 1 |
| 3 |
| π |
| 6 |
2
| ||
| 3 |
所以f(-α)=sin(-α+
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
=sin
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
=-
| ||
| 2 |
2
| ||
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
2
| ||
| 6 |
点评:本题考查y=Asin(ωx+φ)的图象和解析式,考查学生发现问题解决问题的能力,是中档题.
练习册系列答案
相关题目