题目内容

设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数fk(x)=
f(x),f(x)≤K
K,f(x)>K.
取函数f(x)=3-x-e-x.若对任意的x∈(-∞,+∞),恒有fK(x)=f(x),则(  )
A.K的最大值为2B.K的最小值为2
C.K的最大值为1D.K的最小值为1
由题意取函数f(x)=3-x-e-x.若对任意的x∈(-∞,+∞),恒有fK(x)=f(x),故K≥f(x)max
∵f′(x)=-1+e-x,令f′(x)>0得x<0,令f′(x)<0得x>0,
∴函数f(x)=3-x-e-x在x=0处取到最大值,为f(0)=3-0-e-0=2
故K的最小值为2
故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网