题目内容

点P为双曲线C1和圆C2:x2+y2=a2+b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1,F2为双曲线C1的两个焦点,则双曲线C1的离心率为( )
A.
B.
C.
D.2
【答案】分析:由题意:PF1⊥PF2,且2∠PF1F2=∠PF2F1,故∠PF1F2=30°,∠PF2F1=60°.设|PF2|=m,则|PF1|=m,|F1F2|=2m.由e=,能求出双曲线的离心率.
解答:解:由题意:PF1⊥PF2,且2∠PF1F2=∠PF2F1
∴∠PF1F2=30°,∠PF2F1=60°.
设|PF2|=m,
则|PF1|=m,
|F1F2|=2m.
e=
=

=+1.
故选C.
点评:本题考查双曲线的离心率的求法,解题时要认真审题,灵活运用双曲线的性质,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网