题目内容

已知y=f(x)是偶函数,当x>0时,f(x)=(x-1)2;若当x∈[-2,-
1
2
]
时,n≤f(x)≤m恒成立,则m-n的最小值为(  )
A.1B.
1
2
C.
1
3
D.
3
4
设x<0,则-x>0,
有f(-x)=(-x-1)2=(x+1)2
原函数是偶函数,故有f(x)=f(-x)=(x+1)2
即x<0时,f(x)=(x+1)2
该函数在[-2,-
1
2
]上的最大值为1,最小值为0,
依题意   n≤f(x)≤m恒成立,所以n≥0,m≤1,
即m-n≥1.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网