题目内容

设定义在R上的函数f(x)=
1
|x-2
 ,(x≠2)
1 ,(x=2)
若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则这5个根的和等于(  )
A.12B.10C.6D.5
对于f2(x)+bf(x)+c=0来说,f(x)最多只有2解,
又f(x)=
1
|x-2|
(x≠2),当x不等于2时,x最多四解.
而题目要求5解,即可推断f(2)为一解!
假设f(x)的1解为A,得f(x)=
1
|x-2|
=A;
算出x1=2+A,x2=2-A,x1+x2=4;
同理:x3+x4=4;
所以:x1+x2+x3+x4+x5=4+4+2=10;
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网