题目内容
已知f(xy)=f(x)f(y),且f(0)≠0,求f(x).
解析:可利用赋值法求解.赋值法:在求函数的解析式时,有时候要“以退求进”,即把自变量赋于特殊值展现内在联系,或者减少变量个数,以利求解.
答案: 由于等式f(xy)=f(x)f(y)对于一切实数都成立,故不妨设y=0,代入得f(x·0)=f(x)·f(0),即f(0)=f(x)·f(0).
又∵f(0)≠0,∴f(x)=1.
练习册系列答案
相关题目
题目内容
已知f(xy)=f(x)f(y),且f(0)≠0,求f(x).
解析:可利用赋值法求解.赋值法:在求函数的解析式时,有时候要“以退求进”,即把自变量赋于特殊值展现内在联系,或者减少变量个数,以利求解.
答案: 由于等式f(xy)=f(x)f(y)对于一切实数都成立,故不妨设y=0,代入得f(x·0)=f(x)·f(0),即f(0)=f(x)·f(0).
又∵f(0)≠0,∴f(x)=1.