题目内容

已知定义域为(-∞,0)∪(0,+∞)的函数f(x)是偶函数,并且在(-∞,0)上是增函数,若f(3)=0,则
f(x)
x
<0
的解集是(  )
分析:根据函数为偶函数,结合题意确定函数在(0,+∞)上为减函数,再利用单调性将不等式等价转化为具体不等式,解之即得原不等式的解集.
解答:解:∵函数f(x)是偶函数,且在(-∞,0)上是增函数,
∴函数在(0,+∞)上为减函数
∵函数f(x)是偶函数,f(3)=0,可得f(-3)=0
∴不等式
f(x)
x
<0
等价于
x<0
f(x)>0
x>0
f(x)<0

当x>0时,f(x)<0即f(x)<f(3),结合单调性可得x>3;
当x<0时,f(x)>0即f(x)>f(-3),结合单调性可得-3<x<0
∴解不等式
f(x)
x
<0
,得x>3或-3<x<0,解集是(-3,0)∪(3,+∞)
故选:D
点评:本题考查函数单调性与奇偶性的结合,考查解不等式与函数的单调性等知识,属于中档题.将题中的抽象不等式化不等式为具体不等式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网