题目内容

()(本小题满分12分)

如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PAPD=,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中点.

(Ⅰ)求证:PO⊥平面ABCD

(Ⅱ)求异面直线PB与CD所成角的余弦值;

(Ⅲ)求点A到平面PCD的距离.

(1)同解析(2)异面直线PBCD所成的角的余弦值为.(3)点A到平面PCD的距离d


解析:

解法一:

(Ⅰ)证明:在△PAD卡中PAPDOAD中点,所以POAD.

又侧面PAD⊥底面ABCD,平面PAD∩平面ABCDADPO平面PAD

所以PO⊥平面ABCD.

(Ⅱ)连结BO,在直角梯形ABCD中,BCAD,AD=2AB=2BC

ODBCODBC,所以四边形OBCD是平行四边形,

所以OBDC.

由(Ⅰ)知POOB,∠PBO为锐角,

所以∠PBO是异面直线PBCD所成的角.

因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB

在Rt△POA中,因为AP=AO=1,所以OP=1,

在Rt△PBO中,PB,

cos∠PBO=,

所以异面直线PBCD所成的角的余弦值为.

(Ⅲ)

由(Ⅱ)得CDOB

在Rt△POC中,PC

所以PCCDDPS△PCD=·2=.

S△=

设点A到平面PCD的距离h

VP-ACD=VA-PCD

SACD·OPSPCD·h

×1×1=××h

解得h.

解法二:

(Ⅰ)同解法一,

(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz.

A(0,-1,0),B(1,-1,0),C(1,0,0),

D(0,1,0),P(0,0,1).

所以=(-1,1,0),=(t,-1,-1),

∞〈〉=

所以异面直线PBCD所成的角的余弦值为

(Ⅲ)设平面PCD的法向量为n=(x0,y0,x0),

由(Ⅱ)知=(-1,0,1),=(-1,1,0),

则  n·=0,所以  -x0+ x0=0,

n·=0,    -x0+ y0=0, 

x0=y0=x0,    

x0=1,得平面的一个法向量为n=(1,1,1).

=(1,1,0).

从而点A到平面PCD的距离d

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网