题目内容
【题目】直角坐标系xoy中,椭圆
的离心率为
,过点
.
(1)求椭圆C的方程;
(2)已知点P(2,1),直线
与椭圆C相交于A,B两点,且线段AB被直线OP平分.
①求直线
的斜率;②若
,求直线
的方程.
【答案】(1)
.
(2) ①直线
的斜率为除
以外的任意实数.
②
.
【解析】分析:(1)由离心率条件得
,然后将点
.代入原式得到第二个方程,联立求解即可;(2)①先得出OP的方程
,然后根据点差法研究即可;②先表示出
,然后联立直线和椭圆根据韦达定理代入等式求解即可.
详解:
(1)由
可得
,
设椭圆方程为
,代入点
,得
,
故椭圆方程为:
.
(2)①由条件知
,
设
,则满足
,
,
两式作差得:
,
化简得
,
因为
被
平分,故
,
当
即直线
不过原点时,,所以
;
当
即直线
过原点时,
,
为任意实数,但
时
与
重合;
综上即直线
的斜率为除
以外的任意实数.
②当
时,
,故
,
得
,联立
,得
,舍去;
当
时,设直线
为
,代入椭圆方程
可得
,(#)
所以
,
,
,
,
故![]()
解得
,此时方程(#)中
,
故所求直线方程为
.
练习册系列答案
相关题目
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了
名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
![]()
(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的
列联表,并据此资料你是否有
的把握认为选手成绩“优秀”与文化程度有关?
优秀 | 合格 | 合计 | |
大学组 | |||
中学组 | |||
合计 |
注:
,其中
.
|
|
|
|
|
|
|
|
(2)若参赛选手共
万人,用频率估计概率,试估计其中优秀等级的选手人数;