题目内容
已知数列{an}满足
,若对所有n∈N*不等式an≥a3恒成立,则实数c的取值范围是________.
6≤c≤12
分析:根据对所有n∈N*不等式an≥a3恒成立,可得
,验证可知数列在(1,2)上递减,(3,+∞)上递增,或在(1,3)上递减,(4,+∞)上递增.
解答:由题意,c>0,
∵对所有n∈N*不等式an≥a3恒成立,
∴
∴
∴6≤c≤12
此时,数列在(1,2)上递减,(3,+∞)上递增,或在(1,3)上递减,(4,+∞)上递增
故答案为:6≤c≤12
点评:本题考查数列中的恒成立问题,考查学生的计算能力,属于基础题.
分析:根据对所有n∈N*不等式an≥a3恒成立,可得
解答:由题意,c>0,
∵对所有n∈N*不等式an≥a3恒成立,
∴
∴
∴6≤c≤12
此时,数列在(1,2)上递减,(3,+∞)上递增,或在(1,3)上递减,(4,+∞)上递增
故答案为:6≤c≤12
点评:本题考查数列中的恒成立问题,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目