题目内容
已知函数f(x)=ex-ax(e为自然对数的底数)(1)若f(x)≥1在x∈R上恒成立,求实数a的值;
(2)若n∈N*,证明:(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
| e |
| e-1 |
分析:(1)若f(x)≥1在x∈R上恒成立,即f(x)的最小值大于等于1,转化为求函数的最小值问题.利用导数求解.
(2)函数导数综合题中,不等式的证明可考虑利用前面得到的函数的性质进行.
(2)函数导数综合题中,不等式的证明可考虑利用前面得到的函数的性质进行.
解答:(本小题主要考查函数的导数、最值、等比数列等基础知识,考查分析问题和解决问题的能力、以及创新意识)
(1)解:∵f(x)=ex-x,∴f'(x)=ex-1.令f'(x)=0,得x=0.
∴当x>0时,f'(x)>0,当x<0时,f'(x)<0.
∴函数f(x)=ex-x在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增.
∴当x=0时,f(x)有最小值1
(2)证明:由(1)知,对任意实数x均有ex-x≥1,即1+x≤ex.
令x=-
(n∈N*,k=1,2,,n-1),则0<1-
≤e-
,
∴(1-
)n≤(e-
)n=e-k(k=1,2,,n-1).
即(
)n≤e-k(k=1,2,,n-1).∵(
)n=1,
∴(
)n+(
)n++(
)n+(
)n≤e-(n-1)+e-(n-2)++e-2+e-1+1.
∵e-(n-1)+e-(n-2)++e-2+e-1+1=
<
=
,
∴(
)n+(
)n++(
)n+(
)n<
.
(1)解:∵f(x)=ex-x,∴f'(x)=ex-1.令f'(x)=0,得x=0.
∴当x>0时,f'(x)>0,当x<0时,f'(x)<0.
∴函数f(x)=ex-x在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增.
∴当x=0时,f(x)有最小值1
(2)证明:由(1)知,对任意实数x均有ex-x≥1,即1+x≤ex.
令x=-
| k |
| n |
| k |
| n |
| k |
| n |
∴(1-
| k |
| n |
| k |
| n |
即(
| n-k |
| n |
| n |
| n |
∴(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
∵e-(n-1)+e-(n-2)++e-2+e-1+1=
| 1-e-n |
| 1-e-1 |
| 1 |
| 1-e-1 |
| e |
| e-1 |
∴(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
| e |
| e-1 |
点评:本题考查不等式恒成立问题、函数求最值、不等式的证明问题,以及化归转化思想和分类讨论思想,综合性强,难度较大.
练习册系列答案
相关题目