题目内容

(2013•石景山区二模)如图,在直角坐标系xOy中,角α的顶点是原点,始边与x轴正半轴重合,终边交单位圆于点A,且α∈(
π
6
π
2
)
.将角α的终边按逆时针方向旋转
π
3
,交单位圆于点B.记A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
1
3
,求x2
(Ⅱ)分别过A,B作x轴的垂线,垂足依次为C,D.记△AOC的面积为S1,△BOD的面积为S2.若S1=2S2,求角α的值.
分析:(Ⅰ)由三角函数定义,得 x1=cosα=
1
3
,由此利用同角三角函数的基本关系求得sinα的值,再根据x2=cos(α+
π
3
)
,利用两角和的余弦公式求得结果.
(Ⅱ)依题意得 y1=sinα,y2=sin(α+
π
3
)
,分别求得S1 和S2 的解析式,再由S1=2S2 求得cos2α=0,根据α的范围,求得α的值.
解答:(Ⅰ)解:由三角函数定义,得 x1=cosα,x2=cos(α+
π
3
)

因为 α∈(
π
6
π
2
)
cosα=
1
3
,所以 sinα=
1-cos2α
=
2
2
3

所以 x2=cos(α+
π
3
)=
1
2
cosα-
3
2
sinα=
1-2
6
6

(Ⅱ)解:依题意得 y1=sinα,y2=sin(α+
π
3
)
. 所以 S1=
1
2
x1y1=
1
2
cosα•sinα=
1
4
sin2α

S2=
1
2
|x2|y2=
1
2
[-cos(α+
π
3
)]•sin(α+
π
3
)=-
1
4
sin(2α+
3
)

依题意S1=2S2 得 sin2α=-2sin(2α+
3
)
,即sin2α=-2[sin2αcos
3
+cos2αsin
3
]=sin2α-
3
cos2α,
整理得 cos2α=0.
因为 
π
6
<α<
π
2
,所以 
π
3
<2α<π
,所以 2α=
π
2
,即 α=
π
4
点评:本题主要考查任意角的三角函数的定义,两角和差的正弦公式、余弦公式,同角三角函数的基本关系的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网