题目内容

已知函数f(x)=
1
2
x2-f′(2)x
g(x)=lnx-
1
2
x2

(I)求函数f(x)的解析式;
(II)若对于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,求实数a的取值范围;
(III)设x1,x2,a1,a2>0,且a1+a2=1,求证:a1lnx1+a2lnx2≤ln(a1x1+a2x2).
分析:(I)欲求函数f(x)的解析式,根据题意,即求出其中的f'(2)的值,故只须对函数求导后令x=2即可;
(II)设F(x)=f(x)+g(x),对于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,只须a≥F(x)max即可,利用导数求函数F(x)的最大值,则实数a的取值范围可求.
(III)由(II),得F(x)=lnx-x≤-1,即lnx≤x-1,再分别令x=
x1
a1x1+a2x2
x=
x2
a1x1+a2x2
,后利用不等式的性质两式相加,得到一个不等关系式,化简即可证出结论.
解答:解:(I)因为f(x)=
1
2
x2-f′(2)x

所以f′(x)=x-f′(2).(2分)
令x=2,得f′(2)=1,
所以f(x)=
1
2
x2-x
.(4分)
(II)解:设F(x)=f(x)+g(x)=lnx-x,
则F′(x)=
1
x
-1
,(5分)
令F′(x)=0,解得x=1.(6分)
当x变化时,F(x)与F′(x)的变化情况如下表:
x (0,1) 1 (1,+∞)
f′(x) + 0 -
f(x) 极大值
所以当x=1时,F(x)max=F(1)=-1.(9分)
因为对于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,
所以a≥-1.(10分)
(III)证明:由(II),得F(x)=lnx-x≤-1,即lnx≤x-1,
x=
x1
a1x1+a2x2
,得ln
x1
a1x1+a2x2
x1
a1x1+a2x2
-1

x=
x2
a1x1+a2x2
,得ln
x2
a1x1+a2x2
x2
a1x1+a2x2
-1
,(11分)
所以a1ln
x1
a1x1+a2x2
+a2ln
x2
a1x1+a2x2
a1(
x1
a1x1+a2x2
-1)+a2(
x2
a1x1+a2x2
-1)

因为a1+a2=1,
所以a1ln
x1
a1x1+a2x2
+a2ln
x2
a1x1+a2x2
≤1-a1-a2=0

a1ln
x1
a1x1+a2x2
+a2ln
x2
a1x1+a2x2
≤0

所以a1lnx1-a1ln(a1x1+a2x2)+a2lnx2-a2ln(a1x1+a2x2)≤0,
即a1ln1+a2lnx2≤(a1+a2)ln(a1x1+a2x2),
所以a1lnx1+a2lnx2≤ln(a1x1+a2x2).(14分)
点评:本题考查了利用导数研究函数的单调性,函数的导函数在某一区间上大于0,原函数是增函数,导函数小于0,原函数是减函数,考查了利用导数求函数在闭区间上的最值,考查了分离变量法,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网