题目内容
如果函数f(x)=sin(ωπx-)(ω>0)在区间(-1,0)上有且仅有一条平行于y轴的对称轴,则ω的取值范围是________.
已知函数:(a为常数).
(1)
当f(x)的定义域为[a+,a+1]时,求函数f(x)的值域
(2)
试问:是否存在常数m使得f(x)+f(m-x)+2=0对定义域内的所有x都成立;若有求出m,若没有请说明理由.
(3)
如果一个函数的定义域与值域相等,那么称这个函数为“自对应函数”.若函数f(x)在[s,t](a<s<t)上为“自对应函数”时,求实数a的范围.
如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的边长,则称f(x)为“保三角形函数”.下列函数
①f(x)=(x>0)
②g(x)sinx(0<x<)
③h(x)=lnx(x≥e)
④s(x)=x2
其中“保三角形函数”是________(填写序号).
如下图所示,定义在D上的函数f(x),如果满足:对x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数f(x)=x3+在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为S(t)=at-2,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=为下界的函数,求实数a的取值范围.
已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)·f(a-x)=b恒成立,则称f(x)为“S-函数”.
(Ⅰ)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(Ⅱ)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(Ⅲ)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,1),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.
已知关于x的函数f(x)=+bx2+cx+bc,其导函数为f+(x).令g(x)=∣f (x) ∣,记函数g(x)在区间[-1、1]上的最大值为M.
(Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值:
(Ⅱ)若∣b∣>1,证明对任意的c,都有M>2: w.w.w.k.s.5.u.c.o.m
(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值。