题目内容
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)成立的充要条件是( )A.存在一个x∈R,使得f(x)>g(x)
B.有无数多个x∈R,使得f(x)>g(x)
C.对R中任意的x,都有f(x)>g(x)+1
D.R中不存在x,使得f(x)≤g(x)
【答案】分析:由于“函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)成立”与“R中不存在x,使得f(x)≤g(x)”说法一致,得到选项.
解答:解:因为“函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)成立”与“R中不存在x,
使得f(x)≤g(x)”说法一致,
故选D.
点评:本题考查充要条件的定义,属于基础题.
解答:解:因为“函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)成立”与“R中不存在x,
使得f(x)≤g(x)”说法一致,
故选D.
点评:本题考查充要条件的定义,属于基础题.
练习册系列答案
相关题目