题目内容
函数y=f(x)是奇函数,且在(0,+∞)上是单调递增的,f(-3)=0,则不等式xf(x)>0的解集为( )
| A.{x|x<-3,或0<x<3} | B.{x|-3<x<0,或x>3} |
| C.{x|x<-3,或x>3} | D.{x|-3<x<0,或0<x<3} |
∵y=f(x)是奇函数,且f(-3)=0,∴-f(3)=0,可得f(3)=0
∵y=f(x)在(0,+∞)上单调递增,
∴当x∈(0,3)时,f(x)<f(3)=0,此时xf(x)<0;当x∈(3,+∞)时,f(x)>0,此时xf(x)>0
又∵奇函数y=f(x)在(0,+∞)上单调递增,
∴y=f(x)在(-∞,0)上单调递增,
可得:当x∈(-∞,-3)时,f(x)<f(-3)=0,此时xf(x)>0;当x∈(-3,0)时,f(x)>0,此时xf(x)<0
综上所述,可得不等式xf(x)>0的解集为(-∞,-3)∪(3,+∞)
故选:C
∵y=f(x)在(0,+∞)上单调递增,
∴当x∈(0,3)时,f(x)<f(3)=0,此时xf(x)<0;当x∈(3,+∞)时,f(x)>0,此时xf(x)>0
又∵奇函数y=f(x)在(0,+∞)上单调递增,
∴y=f(x)在(-∞,0)上单调递增,
可得:当x∈(-∞,-3)时,f(x)<f(-3)=0,此时xf(x)>0;当x∈(-3,0)时,f(x)>0,此时xf(x)<0
综上所述,可得不等式xf(x)>0的解集为(-∞,-3)∪(3,+∞)
故选:C
练习册系列答案
相关题目
已知函数y=f(x)是奇函数,当x>0时,f(x)=lgx,则f(f(
))的值等于( )
| 1 |
| 100 |
A、
| ||
B、-
| ||
| C、lg2 | ||
| D、-lg2 |