题目内容

已知数列{an}是公差不为0的等差数列,a1=2,且.a2是a1、a4的等比中项,n∈N*
(I)求数列{an}的通项公式an
(Ⅱ)若数列{an}的前n项和为Sn记数列{
1Sn
}
的前n项和为Tn,求证:Tn<1.
分析:(Ⅰ)先等差数列{an}的公差为d(d≠0),根据条件和等差数列的通项公式列出方程求解,再代入等差数列的通项公式化简即可;
(Ⅱ)由(Ⅰ)求出的公差,代入等差数列的前n项和公式化简,再求出
1
Sn
并且裂项,再代入前n项和为Tn化简,根据式子和n的取值范围进行证明即可.
解答:解:(Ⅰ)设等差数列{an}的公差为d(d≠0),
由题意得a22=a1a4,即(a1+d)2=a1(a1+3d)
∴(2+d)2=2(2+3d),解得 d=2,或d=0(舍),
∴an=a1+(n-1)d=2n.
(Ⅱ)由(Ⅰ)得,
Sn=na1+
n(n-1)
2
d=2n+n(n-1)=n2+n

1
Sn
=
1
n2+n
=
1
n(n+1)
=
1
n
-
1
n+1

Tn=
1
S1
+
1
S2
+…+
1
Sn
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)

=1-
1
n+1

∵n∈N*,∴Tn<1.
点评:本题考查了等差数列的通项公式和前n项和公式,裂项相消法求数列的前n项和,数列与不等式结合等,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网