题目内容
设函数y=f(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{an}满足:a1=f(1)+1,
f(
-
)+f(
+
)=0.设Sn=a
a
+a
a
+a
a
+…+a
a
+a
a
.
(1)求数列{an}的通项公式,并求Sn关于n的表达式;
(2)设函数g(x)对任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正项数列{bn}满足:b
=g(
),Tn为数列{bn}的前n项和,试比较4Sn与Tn的大小.
解:(1)当x,y∈(0,+∞)时,有f(xy)=f(x)+f(y),
令x=y=1得f(1)=2f(1),得f(1)=0,所以a1=f(1)+1=1.(1分)
因为f(
-
)+f(
+
)=0,所以f(
-
)=0=f(1).
又因为y=f(x)在(0,+∞)上是单调增函数,所以
-
=1,即
-
=4,(3分)
所以数列{
}是以1为首项,4为公差的等差数列,所以
=4n-3,所以an=
.
∵a
a
=
=
[
-
],
∴Sn=
[
-
+
-
+…+
-
]=
[1-
].
(2)由于任意x,y∈R都有g(x+y)=g(x)+g(y)+2xy,则g(2x)=2g(x)+2x2,
∴g(1)=2g(
)+2·(
)2=2[2g(
)+2·(
)2]+
=22g(
)+
+![]()
=22[2g(
)+2·(
)2]+
+
=23g(
)+
+
+![]()
=…=2ng(
)+
+
+
+…+
+
=1,
∴g(
)=
,即b
=
. 又bn>0,∴bn=
,
∴Tn=
+
+…+
=1-
,又4Sn=1-
.
当n=1,2,3,4时,4n+1>2n,∴4Sn>Tn;
当n≥5时,2n=C
+C
+C
+…+C
+C
>1+2n+2
=1+n2+n.
而n2+n+1-(4n+1)=n2-3n=n(n-3)>0,故4Sn<Tn.