题目内容
已知定义在R上的函数f(x)满足f(2)=3,f′(x)-1<0,则不等式f(x2)<x2+1的解集为______.
根据f(x)在R上的导数满足f/(x)-1<0即f′(x)<1,讨论导函数的正负得到函数的单调区间为:
①当f′(x)<0时得到函数f(x)单调递减,
即当x2<2时,得到f(x2)>f(2)=3即x2+1>3,解得x2>2,矛盾;
②当0<f′(x)<1时得到函数f(x)单调递增,
即当x2>2时,得到f(x2)>f(2)=3即x2+1>3,解得x2>2,所以x>
或x<-
综上,不等式f(x2)<x2+1的解集为{x|x>
或x<-
}
故答案为{x|x>
或x<-
}
①当f′(x)<0时得到函数f(x)单调递减,
即当x2<2时,得到f(x2)>f(2)=3即x2+1>3,解得x2>2,矛盾;
②当0<f′(x)<1时得到函数f(x)单调递增,
即当x2>2时,得到f(x2)>f(2)=3即x2+1>3,解得x2>2,所以x>
| 2 |
| 2 |
综上,不等式f(x2)<x2+1的解集为{x|x>
| 2 |
| 2 |
故答案为{x|x>
| 2 |
| 2 |
练习册系列答案
相关题目
已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=( )
| A、0 | B、2013 | C、3 | D、-2013 |