题目内容
已知函数f(x)=(x2+ax+a)ex(x∈R)
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若a≤2,且f(x)的极大值为3,求出a的值.
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若a≤2,且f(x)的极大值为3,求出a的值.
分析:(Ⅰ)当a=1时,f′(x)=(x2+3x+2)ex,令f′(x)=0,得x1=-1,x2=-2,列表讨论能求出f(x)的增区间和减区间.
(Ⅱ)由f(x)=(x2+ax+a)ex(x∈R),知f′(x)=[x2+(2+a)x+2a]ex,令f′(x)=0,得x1=-a,x2=-2,由a≤2,且f(x)的极大值为3,能求出实数a的值.
(Ⅱ)由f(x)=(x2+ax+a)ex(x∈R),知f′(x)=[x2+(2+a)x+2a]ex,令f′(x)=0,得x1=-a,x2=-2,由a≤2,且f(x)的极大值为3,能求出实数a的值.
解答:解:(Ⅰ)当a=1时,f(x)=(x2+x+1)ex,
∴f′(x)=(2x+1)ex+(x2+x+1)ex
=(x2+3x+2)ex,
令f′(x)=0,得x1=-1,x2=-2,
列表讨论
∴f(x)的增区间是(-∞,-2),(-1,+∞);减区间是(-2,-1).
(Ⅱ)∵f(x)=(x2+ax+a)ex(x∈R),
∴f′(x)=(2x+a)ex+(x2+ax+a)ex
=[x2+(2+a)x+2a]ex,
令f′(x)=0,得x1=-a,x2=-2,
∵a≤2,∴-a≥-2,列表讨论
∴x=-2时,f(x)取极大值f(-2)=(4-2a+a)e-2=(4-a)e-2,
∵a≤2,且f(x)的极大值为3,
∴(4-a)e-2=3,
∴a=4-3e2.
∴f′(x)=(2x+1)ex+(x2+x+1)ex
=(x2+3x+2)ex,
令f′(x)=0,得x1=-1,x2=-2,
列表讨论
| x | (-∞,-2) | -2 | (-2,-1) | -1 | (-1,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
(Ⅱ)∵f(x)=(x2+ax+a)ex(x∈R),
∴f′(x)=(2x+a)ex+(x2+ax+a)ex
=[x2+(2+a)x+2a]ex,
令f′(x)=0,得x1=-a,x2=-2,
∵a≤2,∴-a≥-2,列表讨论
| x | (-∞,-2) | -2 | (-2,-a) | -a | (-a,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
∵a≤2,且f(x)的极大值为3,
∴(4-a)e-2=3,
∴a=4-3e2.
点评:本题考查函数的单调区间的求法,考查利用函数的极大值求实数a.解题时要认真审题,仔细解答,注意分类讨论思想和等价转化思想及导数性质的合理运用.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|