题目内容
已知等差数列{an}是递增数列,且满足a4•a7=27,a2+a9=12.
(1)求数列{an}的通项公式;
(2)令bn=
,求数列{bn}的前n项和Sn.
(1)求数列{an}的通项公式;
(2)令bn=
| 1 | anan+1 |
分析:(1)由等差数列的性质可知,a2+a9=a4+a7,结合已知可求a7,a4,然后代入公差d=
可求d,从而可求通项
(2)由bn=
═
=
(
-
),利用裂项求和即可求解
| a7-a4 |
| 7-4 |
(2)由bn=
| 1 |
| anan-1 |
| 1 |
| (2n-5)(2n-3) |
| 1 |
| 2 |
| 1 |
| 2n-5 |
| 1 |
| 2n-3 |
解答:解:(1)由等差数列的性质可知,a2+a9=a4+a7=12
∵a4•a7=27且a7>a4
解可得,a7=9,a4=3
∴公差d=
=
=2
∴an=a4+(n-4)d=2n-5
(2)∵bn=
═
=
(
-
)
∴sn=
[(-
+1)+(-1-1)+(
-
)+…+
-
]
=
(-
-
)=
∵a4•a7=27且a7>a4
解可得,a7=9,a4=3
∴公差d=
| a7-a4 |
| 7-4 |
| 9-3 |
| 7-4 |
∴an=a4+(n-4)d=2n-5
(2)∵bn=
| 1 |
| anan-1 |
| 1 |
| (2n-5)(2n-3) |
| 1 |
| 2 |
| 1 |
| 2n-5 |
| 1 |
| 2n-3 |
∴sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-5 |
| 1 |
| 2n-3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n-3 |
| -n |
| 3(2n-3) |
点评:本题主要考查了等差数列的 性质及通项公式的应用,及数列的裂项求和方法的应用,属于数列知识的综合应用.
练习册系列答案
相关题目